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Dopamine is associated with a variety of conserved responses

across species including locomotion, sleep, food consumption,

aggression, courtship, addiction and several forms of

appetitive and aversive memory. Historically, dopamine has

been most prominently associated with dynamics underlying

reward, punishment, or salience. Recent emerging evidence

from Drosophila supports a role in all of these functions, as well

as additional roles in the interplay between external sensation

and internal states and forgetting of the very memories

dopamine helped encode. We discuss how cell-specific

resolution and manipulation are elucidating the rules of

dopamine’s involvement in encoding valence and memory.
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Introduction
Contemporary recording, tracing, and manipulation

approaches in mammals have resulted in tremendous

progress towards identifying dopaminergic networks

involved in the coding and processing of reward and

aversive stimuli. This has also led to the discovery of a

diverse population of neuronal subtypes within dopamine

networks. Although the Drosophila brain contains orders

of magnitude fewer dopaminergic neurons, there are

several shared anatomical and functional features of

dopamine systems in mammals and flies [1]. In mammals,

dopamine is part of a highly interconnected network of

modulators and transmitters important for complex beha-

viors such as reward seeking (Figure 1a). These include

serotonin, norepinephrine (octopamine), acetylcholine,

glutamate, and GABA, and many neuropeptides. A
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similar neuronal architecture mediates comparable beha-

viors in Drosophila (Figure 1b). Also shared across species

are broad dopaminergic arborization throughout the brain

and compartmental tiling onto specific brain structures.

In the adult central nervous system of Drosophila there

are 11 clusters of dopamine neurons, projecting to over

12 broadly defined neuropil structures [2��,3–6] (Figure 2).

The improved ability to characterize and manipulate these

neurons at the single cell level has allowed for unprece-

dented precision and insight into their diverse functions.

Here we describe recent work in Drosophila that illustrates

the timing and cell-type specific requirements of dopamine

neurons in forming and forgetting memories. We consider

how changes in internal state can affect these dopamine

circuit dynamics and its implications for understanding

memory and addiction.

Distinct dopamine neurons assign opposing
valences
In order to survive, animals need to sense their environ-

ment, evaluate the surrounding stimuli, and initiate an

appropriate behavioral response. Flies, like other animals,

learn the predictive value of stimuli to guide future

behaviors. Most of the recent insight into the ability to

do this derives from mushroom body (MB) circuitry. The

MB receives information from multiple primary sensory

centers in the brain, most notably the olfactory system [7].

The axons of these �2000 MB intrinsic cells form three

distinct MB lobes. Tiled on to these lobes are the axons of

20 types of dopamine neurons which originate from two

clusters, PPL1 and PAM, consisting of 12, and roughly

100 neurons respectively (Figure 2a). Pioneering findings

suggested that the PPL1 dopamine neurons innervating

the vertical MB lobes relay aversive stimuli [8,9,10�]
whereas the PAM cluster of dopamine neurons innervat-

ing the horizontal MB lobes relay appetitive stimuli

[11,12]. Together, these data suggest that the punishing

or reinforcing nature of a stimulus is largely conveyed by

distinct clusters of dopamine neurons, and the respective

MB lobe they innervate. In mammals, the indirect and

direct pathways of midbrain dopamine projections to the

basal ganglia intriguingly parallel this separation in beha-

viors for punishment avoidance and reward seeking [1].

Memory is compartmentalized
More recent data suggest that two dopaminergic neuron

clusters are elaborately subdivided and segregate into

distinct compartments along the MB lobes. Dopaminer-

gic projections align with dendrites of glutamatergic,

cholinergic, or GABAergic MB output neurons (MBONs),
www.sciencedirect.com
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Figure 1
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Dopamine networks in flies and mammals. In flies and mammals, complex feedback and feedforward networks between dopamine (blue)

glutamate (magenta), GABA (grey), acetylcholine (green), and norepinephrine/octopamine (yellow) regulate reinforcement memory [1]. (a) A saggital

section of a rodent brain shows dopamine projections from the ventral tegmental area (VTA) to the striatum, nucleus accumbens (NAc) and bed

nucleus of the stria terminus (BNST), which send GABAergic and glutamatergic projections back to the VTA. These VTA dopamine neurons are

modulated by norepinephrine from the locus coeruleus (LC). Another subset of dopamine neurons from the substantia nigra (SN) project to the

pedunculopontine nucleus (PPN), which in turn sends cholinergic projections back to the SN. (b) In Drosophila, PAM dopamine neurons project

from the superior medial protocerebrum (SMP) and crepine neuropil (CRE) to the horizontal mushroom body (MB) lobes, where GABAergic and

glutamatergic MB output neurons project back to the SMP and CRE. These PAM neurons are modulated by octopamine. PPL1 dopamine neurons

project from the superior intermediate protocerebrum (SIP) and superior lateral protocerebrum (SLP), to the vertical MB lobes and cholinergic

neurons project from these areas to the SIP and SLP.
subdividing the MB into 15 distinct compartmental units

[2��] (Figure 3). For example, blocking activity of the

PPL1 dopamine input or corresponding GABA output of

the g1ped compartment blocks odor memory for electric

shock [8,13]. Experimental activation of the g1ped PPL1

neuron, in conjunction with odor presentation, causes a

reduction in spiking of the corresponding g1ped MBON

consistent with MB-intrinsic long-term depression

(Figure 4a,b) [14��]. Since activating the g1ped GABA

output signals positive valence, it is likely that dopamine

modulates behavior by inducing a long-lasting depression
www.sciencedirect.com 
in this neuron. Moreover, dopamine released in one

compartment induces robust plasticity in that compart-

ment, but not its neighbor [14��], suggesting that these

anatomically defined compartments of the MB lobes are

functionally independent (Figure 4b).

Spatial modularity is an ideal way to allow the fly to form a

series of different memories, that cause distinct behav-

ioral reactions. This is apparent in dissociating compart-

ments important in different forms of appetitive memory.

Two dopamine-MBON compartments (b02 and g4) are
Current Opinion in Neurobiology 2017, 43:56–62
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Figure 2
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Dopamine neurons in the adult brain. Representative schematic of dopamine neuron motifs in (a) anterior and (b) posterior areas of the adult

Drosophila central nervous system (largely based on data from the Virtual Fly Brain [4], FlyCircuit [5] and FlyLight [6] databases). The neurons are

located bilaterally, but for clarity, only unilateral examples are depicted. Dopamine broadly innervates many brain areas, although subsets of

neurons compartmentalize structures such as the mushroom body (MB) and central complex (CC).
involved in the short-term reinforcing effects of the sweet

taste of sugar [15�,16�]. Conversely, the long-term rein-

forcing effects that are induced by sugar’s calories engage

dopamine neurons projecting to two different compart-

ments (g5 [15�] and a1 [16�]). This compartmentalization

makes it possible for a fly to make the complex, context-

dependent choices to survive in a changing environment.
Figure 3
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The parameters of DA activation affect the
outcome
As mentioned above, different dopamine neurons induce

short-term or long-term memory formation, thereby

affecting the kinetics of memory retention. But what

are the consequences of dopamine modulation at the

level of the MB and MBONs? Different dopamine
MB output neurons

GABA

glu

ACh

α1

α2

α3

β1

γ1γ2γ3γ4γ5

β2

LHSIP SLP

CRE

SMP

Current Opinion in Neurobiology
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Figure 4
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Location, timing and intensity of dopamine neuron activation determine formation and valence of memories. (a) Schematic of the g1ped PPL1 MB

dopamine-GABA microcircuit. Axons of the dopamine neuron align with dendrites of the GABA neuron in the g1ped compartment. Both neurons

send projections to the CRE and the contralateral side of the brain. The dopamine neuron also projects to the SMP, SLP and SIP [13]. The

complex innervation patterns, including possible feedback, of the g1ped dopamine and GABA neurons may contribute to how timing predicts

valence, formation, or expression of memory. (b) Timing between experimental activation of the PPL1 g1ped dopamine neuron and odor stimulus

affects the behavioral outcome. When odor is presented before experimental g1ped PPL1 dopamine stimulation, or concurrently, an aversive

memory is formed. However, if the odor is presented following dopamine neuron activation, an appetitive memory is induced [17��]. Concurrent

odor presentation and dopamine stimulation also results in long-term depression of the MB-GABA synapse, in a compartment-specific manner

[14��]. Odor presentation after dopamine stimulation, however, did not change this synapse [14��], suggesting that the activation of other

compartments via feedback loops might underlie the behavioral attraction induced.
neurons have distinct rules in regards to the intensity and

repetition of activation required to produce synaptic

plasticity and memory [14��,17��]. Interestingly, for one

PPL1 dopamine neuron (g1ped), the timing of its experi-

mental activation relative to the odor presentation pro-

duces opposite behavioral effects. This neuron provides

information about an aversive stimulus, such as an electric

shock [8,9,10�]. When odor presentation precedes g1ped
PPL1 activation, the odor predicts punishment and the

flies avoid the odor. Conversely, when the odor follows

g1ped PPL1 activation, the odor predicts relief from

punishment and becomes attractive (Figure 4b) [17��].
This switch of valence is also observed with other PPL1

neurons (a02a2, g2a01). In contrast, when appetitive PAM

neurons are activated with different timing relative to

odor presentation, a switch in valence is not observed

[17��]. This suggests that the relative timing between

dopamine neuron activation and cue presentation plays a

more qualitatively instructive role in punishment, than in

appetitive reinforcement [17��]. This provides a mecha-

nism through which stimuli that predict punishment are

valued differently from stimuli that predict the end of

punishment, with the former being avoided, and the latter

becoming attractive. Clearly, when and how dopamine

neurons are activated matters not only for the strength

and persistence of an induced memory, but also for its

valence.
www.sciencedirect.com 
Parallel and additive processing
Within each cluster, a combination of dopamine neurons

innervating multiple compartments along the same lobe

may be required to signal the full extent of a stimulus and

its resulting memory. In support of this, taste memory for

an aversive stimulus is dependent on activation of com-

binations of PPL1 neurons [10�]. Similarly, experimental

activation of dopamine neurons that innervate multiple

MB compartments, rather than a single compartment, is

more likely to produce memories [17��]. This quantitative

multi-compartment coordination suggests that parallel

and additive processing is built into the circuit response,

which might provide flexibility for responses to multiple,

and/or competing reinforcing or punishing stimuli.

Crosstalk and feedback in dopamine circuits
MBON axons and dopamine neuron dendrites show

substantial connectivity in convergence zones outside

the MB, resulting in a high degree of feedback and

interconnectivity between these circuits [2��] (Figure 3).

Activating dopamine neurons in one compartment can

cause a concomitant increase in activity in another com-

partment and a decrease in yet others [18��]. This

involves MBON-mediated feedback within the lobes

or via the convergence zones outside the MB. For exam-

ple, the g1ped GABA MBON sends projections along the

g lobe, and its activation decreases odor-evoked response
Current Opinion in Neurobiology 2017, 43:56–62
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of other g MBONs (b02g5) [18��,19�,20]. Similarly, the a1
glutamate MBON sends projections to dendrites of the

a1 dopamine PAM neurons, and activation of this MBON

drives activity of the a1 PAM neurons in a feed-forward

loop during appetitive memory expression [21�].

A role for dopamine in forgetting
The findings summarized above suggest a role for dopa-

mine in stimulus reinforcement during memory forma-

tion, but other recent data suggest that it may also play an

active role in forgetting. Silencing the majority of dopa-

mine neurons after aversive odor conditioning increases

avoidance memory 3 hours after training [22��]. This

increased memory is a consequence of reduced forgetting

of the 3-min avoidance memory and requires the DAMB

(D1-like) dopamine receptor in the MB [22��]. Similarly,

activating the g1ped PPL1 neuron in the absence of odor

causes a reduction in odor avoidance that was previously

induced by pairing odor with activation of that very same

g1ped PPL1 [17��].

Why would activation of the same dopamine neuron

cause aversion when paired with the odor, but cause

forgetting of that very memory when presented alone?

One intriguing suggestion comes from the finding that the

same manipulations that lead to reduced forgetting also

suppress reversal learning [23]. In this paradigm the odor

A + shock versus odor B training is reversed to odor B

+ shock versus odor A and flies re-learn to avoid odor B

instead of A. This behavioral flexibility allows for differ-

ent context-specific associations so that the same odor can

be associated with reward in one context and with pun-

ishment in another. Thus, a low level of dopaminergic

activity may signal ‘pay attention, things are happening in

the environment’. Although this promotes forgetting of

memories [17��,22��], it also facilitates reversal learning to

prime animals for new experiences and valence associa-

tions that are most relevant. Intriguingly, subsets of

dopamine (PAM-b01) and MBON (g4 > g1g2) involved

in forgetting did not affect reversal learning, suggesting a

complex interplay within the dopamine MB circuitry that

provides opportunity to learn and re-learn in multiple

contexts [24].

Internal state affects dopamine dynamics
The information that an animal pays attention to and

learns is dependent on its internal state. If a fly is hungry,

it is more likely to brave the heat and feed on a ferment-

ing apple located in a sunny spot. Work in Drosophila
suggests that these decisions are gated through dopamine

neurons. Activation of the g1ped dopamine PPL1 neuron

suppresses the expression of memory for sucrose when

flies are hungry [25]. Odor-evoked activity of the corre-

sponding g1ped GABA MBON is elevated in hungry flies

[19�]. Thus, internal state changes basal dynamics within

a dopamine memory circuit, which can, in turn, enhance

its response to reinforcers like sucrose or shock [26].
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This is not specific to this PPL1 neuron, but appears to be

a more general phenomenon. Long-term memory forma-

tion from caloric reinforcement involves dopamine neu-

rons projecting to the b02 and g4 MB lobes [15�,16�].
These PAM neurons receive input from a Gr43a-positive

neuron that senses internal fructose levels therefore mak-

ing them reactive to the internal nutritional state of the fly

[16�]. Indeed, sucrose feeding in hungry flies increases

the activity of appetitive dopamine neurons projecting to

the g5 and g4 MB lobes [18��], as does water feeding,

albeit only in thirsty flies [27]. Similarly, the response to

appetitive odors is enhanced in dopamine neurons pro-

jecting to the b02 and g5 lobes in hungry animals [28].

This suggests that internal states not only cause activation

of dopamine neurons, but can also modulate the effec-

tiveness of the external reinforcer.

Relevance to addiction
A common theme in addiction is that drugs of abuse

hijack the dopaminergic ‘reward’ circuit and thus these

artificial rewards reinforce associated behaviors. Many

drugs of abuse, including alcohol, are complex stimuli

with both aversive and appetitive properties. Naı̈ve flies’

initial response in an alcohol consumption choice is to

avoid it [29�]. Similarly, an odor associated with alcohol

intoxication initially causes avoidance of that odor [30��].
This response is succeeded by attraction to the odor the

next day [30��]. Because the PAM and PPL1 dopamine

neurons are required for oviposition preference and

avoidance for ethanol [31], we propose that they play

critical role in providing aversive and appetitive alcohol

reinforcement. Thus, ethanol-induced activation of PAM

dopamine neurons would provide the appetitive intoxi-

cation effects whereas ethanol-induced activation of

PPL1 neurons would provide both the punishing aversive

effects, (when an odor predicts punishment) and relief

from punishment (when an odor predicts PPL1 inactiva-

tion). We speculate that the simultaneous PAM neuron

activation and PPL1 neuron inactivation provides an

additional ‘boost’ to the appetitive nature of ethanol

memory. Perhaps this explains why more flies will walk

over a 120 V electric shock to seek an odor previously

associated with ethanol than with sucrose [30��].

Further complicating dopaminergic involvement in

addiction is how drugs of abuse can modulate internal

state of the animal, thus affecting DA reinforcement.

Many drugs of abuse stimulate locomotion, and that is

true too for alcohol, which induces Drosophila hyperloco-

motion [32]. This response is dopamine-dependent and

requires activity in the PPM3 dopamine neurons that

project to the ellipsoid body of the central complex, a

known pre-motor center [32,33]. Changing the activity

and arousal state of the animal, could potentially shift DA

neuron dynamics in the MB as is observed when flies shift

from low activity sucrose feeding to high activity flailing

[18��]. This also predicts a high level of interconnectivity
www.sciencedirect.com



Dopaminergic regulation of memory in flies Kaun and Rothenfluh 61
between the central complex and mushroom body.

Ultimately, the drug-induced engagement of the dopa-

minergic system leads to various, and even competing

responses, which may have different strengths and decay

kinetics, and the emerging summation of these responses

and memories therefore appears complex, including shifts

in valence [30��].

Conserved principles of neuromodulation
The last few years have revealed that flies use circuits

defined by segregated compartments containing localized

dopamine modulation layered on to sensory input—com-

partment-specific output neurons, and that memories are

formed when dopamine changes the synaptic plasticity of

these circuits. Given the compartmentalized nature of

many mammalian brain structures, it seems likely that

these basic rules are conserved. In addition to this com-

partmentalized circuit architecture, we are also continu-

ing to learn how distinct dopamine neurons can mediate

behavioral changes with opposing valence, and how they

are involved in the expression/interpretation of the ani-

mal’s internal state. Layered on this is the role for tonic

dopaminergic activity serving as a signal for salience,

priming the MB for learning, and re-learning. The possi-

bility to study these complexities with both increasing

behavioral sophistication, and anatomical precision,

makes Drosophila an effective model organism to con-

tinue to unravel the ways in which dopamine guides and

modulates memories and behavior.
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